

Southampton

Ultimate Strength of Plates and Stiffened Panels

by

Professor Jeom Paik

The LRET Research Collegium Southampton, 11 July – 2 September 2011 Ultimate Strength of Plates and Stiffened Panels

Prof. Jeom Kee Paik, Director The LRET Research Centre of Excellence at Pusan National University, Korea

Overview

- Aims and Scope
- Rationally-Based Structural Design
- Methods used for Benchmark Study
- Theory of the ALPS/ULSAP Method
 - Ultimate Strength of Plates
 - Ultimate Strength of Stiffened Panels
- Benchmark Study
 - Target Structure: Unstiffened panel
 - Ultimate Strength of Unstiffened Plates under Biaxial Compression
 - Target Structure: Stiffened panel
 - Nonlinear FEA Modeling
 - Ultimate Strength of Stiffened Panels
- Concluding Remarks

Aims and Scope

Stiffened panel structure

Stiffened panel subject to a combined in-plane and lateral pressure load

Rationally-Based Structural Design

(Optimum structural design procedure based on ultimate limit state)

Methods Used for Benchmark Study

- Candidate methods
 - Nonlinear finite element method (ANSYS, MSC/MARC, Abaqus)
 - ALPS/ULSAP method
 - DNV/PULS method

Theory of the ALPS/ULSAP Method

Theory of the ALPS/ULSAP Method

- ALPS/ULSAP (Analysis of Large Plated Structures / Ultimate Limit State Assessment Program), developed by Prof. J.K.Paik, Pusan National University

Ultimate Limit State Design of Steel-Plated Structures (2003)

Paik & Thayamballi

Ship Structural Analysis and Design (2010)

Hughes & Paik

Ultimate Strength of Plates: $\sigma_u = \min(\sigma_{u1}, \sigma_{u2}, \sigma_{u3})$

(a) Plasticity at the corners

$$\sigma_{eq2} = \sqrt{\sigma_{x\max}^2 - \sigma_{x\max}\sigma_{y\min} + \sigma_{y\min}^2 + 3\tau^2} = \sigma_y$$

(b) Plasticity at the longitudinal mid-edges

$$\sigma_{eq3} = \sqrt{\sigma_{x\min}^2 - \sigma_{x\min}\sigma_{y\max} + \sigma_{y\max}^2 + 3\tau^2} = \sigma_y$$

(c) Plasticity at the transverse mid-edges

• : Expected plasticity location T: Tension

C: Compression

Ultimate Strength of Stiffened Panels: 6 Types of Collapse Modes

 $\boldsymbol{\sigma}_{u} = \min(\boldsymbol{\sigma}_{u}^{\mathsf{I}}, \boldsymbol{\sigma}_{u}^{\mathsf{II}}, \boldsymbol{\sigma}_{u}^{\mathsf{III}}, \boldsymbol{\sigma}_{u}^{\mathsf{IV}}, \boldsymbol{\sigma}_{u}^{\mathsf{V}}, \boldsymbol{\sigma}_{u}^{\mathsf{VI}})$

Mode I – overall collapse

Mode II – plate-induced collapse

Mode III – stiffener-induced collapse by beam-column type collapse

Mode IV – stiffener-induced collapse by web buckling

Mode V – stiffener-induced collapse by tripping

Mode VI: Gross yielding

Benchmark Study

- Candidate methods
 - Nonlinear finite element method (ANSYS, MSC/MARC, Abaqus)
 - ALPS/ULSAP method
 - DNV/PULS method

Target Structure: Unstiffened Panel

- Material and Geometric Properties
 - Yield stress of plate, σ_{Yp} = 313.6 N/mm²
 - Yield stress of stiffener, $\sigma_{Ys} = 313.6 \text{ N/mm}^2$
 - Elastic modulus, E = 205800 N/mm²
 - Poisson's ratio, v = 0.3
 - Plate length, a = 2550 mm
 - Plate breath, b = 850 mm
 - Plate thickness, $t_p = 11, 16, 22, 33 \text{ mm}$
 - Under biaxial compressive loads
 - All edges simply supported
 - No residual stress
 - No lateral pressure

Unstiffened Plates under Biaxial Compression (1/3)

Buckling half-wave number

$$\frac{(m^2/a^2+1/b^2)^2}{m^2/a^2+c/b^2} \le \frac{[(m+1)^2/a^2+1/b^2]^2}{(m+1)^2/a^2+c/b^2}$$

where,
$$c = \sigma_y / \sigma_x$$

 σ_x and σ_y are the component of the longitudinal and transverse axial buckling stress of the plate under combined biaxial loading.

 $\sigma_{x,1}$ and $\sigma_{y,1}$ are the component of the longitudinal or transverse axial buckling stress of the plate under uniaxial loading.

Unstiffened Plates under Biaxial Compression (2/3)

t_p=11mm

t_p=16mm

Unstiffened Plates under Biaxial Compression (3/3)

t_p=33mm

Target Structure: Stiffened Panel (1/2)

- Material and Geometric Properties
 - Yield stress of plate, σ_{Yp} = 313.6 N/mm²
 - Yield stress of stiffener, σ_{Ys} = 313.6 N/mm²
 - Elastic modulus, E = 205800 N/mm²
 - Poisson's ratio, v = 0.3
 - Plate length, a = 4750 mm
 - Plate breath, b = 950 mm
 - Plate thickness, $t_p = 11, 12.5, 15, 18.5, 25, 37 \text{ mm}$
 - Number of the stiffeners: 8 stiffeners in a panel
 - No residual stress

Target Structure: Stiffened Panel (2/2)

Dimensions of the Stiffeners

		Flat bar (h _w xt _w)	Angle bar (h _w xb _f xt _w /t _f)	Tee bar $(h_w X b_f X t_w / t_f)$	
	Size 1	150x17	138x90x9/12	138x90x9/12	
	Size 2	250x25	235x90x10/15	235x90x10/15	
	Size 3	350x35	383x100x12/17	383x100x12/17 580x150x15/20	
	Size 4	550x35	580x150x15/20		
ľ C N.	b h _w	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	b \downarrow \downarrow t_p h_w \downarrow \downarrow \downarrow \downarrow t_p A. N	$\begin{array}{c c} & b \\ \hline & & \downarrow \\ \hline & & \uparrow \\ \hline & & \downarrow \\ \hline \\$	
	<u> </u>	har	$ \begin{array}{c} $	$ \begin{array}{c} $	
	Indlk	μαι			

*N.A. = neutral axis

ANSYS Nonlinear FEA Modeling (1/2)

Boundary Conditions

Boundary	Description	
	Symmetric condition with $R_x = R_z = 0$ and	
A-A''' and D-D'''	uniform displacement in the y direction (U_y =uniform),	
	coupled the plate part	
	Symmetric condition with $R_y = R_z = 0$ and	
A-D and A'''-D'''	uniform displacement in the x direction (U _x =uniform),	
	coupled with longitudinal stiffeners	
A'-D', A''-D'',	U _z =0	
B-B' and C-C'		

ANSYS Nonlinear FEA Modeling (2/2)

Mesh Sizes Applied

	Size 1	Size 2	Size 3	Size 4
Flat type (h _w ×t _w)	150×17(mm)	250×25(mm)	350×35(mm)	550×35(mm)
	27600 elements	27600 elements	40400 elements	50000 elements
Angle type (h _w ×b _f ×t _w /t _f)	138×90×9/12(mm)	235×90×10/15(mm)	383×100×12/17(mm)	580×150×15/20(mm)
	30800 elements	30800 elements	43600 elements	53200 elements
Tee type $(\mathbf{h}_{w} \times \mathbf{b}_{f} \times \mathbf{t}_{w}/\mathbf{t}_{f})$	138×90×9/12(mm)	235×90×10/15(mm)	383×100×12/17(mm)	580×150×15/20(mm)
	30800 elements	30800 elements	43600 elements	53200 elements

MSC/MARC Nonlinear FEA Modeling by Prof. M. Fujikubo, Osaka University

Extent of Analysis: Two bay/two span model

Mesh Sizes Applied (22753 elements)

Abaqus Nonlinear FEA Modeling by Dr. Amlashi Hadi, DNV

Nonlinear FEA Modeling for ANSYS and MSC/MARC

Plate Initial Deflection

Sideways Initial Distortion of Stiffener

$$w_{os} = C_0 \frac{z}{h_w} \sin \frac{\pi x}{a}$$

$$A_o = 0.1\beta^2 t_p; \ B_o = C_o = 0.0015a; \ \beta = \frac{b}{t_p} \sqrt{\frac{\sigma_{Yp}}{E}}$$

Nonlinear FEA Modeling for ANSYS and MSC/MARC

Plate Initial Deflection

Sideways Initial Distortion of Stiffener

Ultimate Strength of Stiffened Panels (1/26)

Flat Bar Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (2/26)

Flat Bar Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (3/26)

Angle Bar Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (4/26)

Angle Bar Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (5/26)

Tee Bar Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (6/26)

Tee Bar Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (7/26)

Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (8/26)

Under Longitudinal Uniaxial Compression

Ultimate Strength of Stiffened Panels (9/26)

Flat Bar Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (10/26)

Flat Bar Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (11/26)

Angle Bar Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (12/26)

Angle Bar Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (13/26)

Tee Bar Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (14/26)

Tee Bar Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (15/26)

• Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (16/26)

Under Transverse Uniaxial Compression

Ultimate Strength of Stiffened Panels (17/26)

Buckling half-wave number

$$\frac{(m^2/a^2+1/b^2)^2}{m^2/a^2+c/b^2} \le \frac{[(m+1)^2/a^2+1/b^2]^2}{(m+1)^2/a^2+c/b^2}$$

where,
$$c = \sigma_y / \sigma_x$$

 σ_x and σ_y are the component of the longitudinal and transverse axial buckling stress of the plate under combined biaxial loading.

 $\sigma_{x,1}$ and $\sigma_{y,1}$ are the component of the longitudinal or transverse axial buckling stress of the plate under uniaxial loading.

Ultimate Strength of Stiffened Panels (18/26)

Under Biaxial Compression (Flat Bar, t_p=18.5mm)

Size 2

Ultimate Strength of Stiffened Panels (19/26)

Under Biaxial Compression (Flat Bar, t_p=18.5mm)

Ultimate Strength of Stiffened Panels (20/26)

Under Biaxial Compression (Angle Bar, t_p=18.5mm)

Size 2

Ultimate Strength of Stiffened Panels (21/26)

Under Biaxial Compression (Angle Bar, t_p=18.5mm)

Size 4

Ultimate Strength of Stiffened Panels (22/26)

Under Biaxial Compression (Tee Bar, t_p=18.5mm)

Size 2

Ultimate Strength of Stiffened Panels (23/26)

Under Biaxial Compression (Tee Bar, t_p=18.5mm)

Size 4

Ultimate Strength of Stiffened Panels (24/26)

• Under Combined Longitudinal Compression and Lateral Pressure Loads

Stiffener-sided Pressure

Ultimate Strength of Stiffened Panels (25/26)

• Under Combined Longitudinal Compression and Lateral Pressure Loads

Ultimate Strength of Stiffened Panels (26/26)

• Under Combined Longitudinal Compression and Lateral Pressure Loads

Plate thickness, $t_p = 15 \text{ mm}$

 $h_w \times b_f \times t_w/t_f = 383 \times 100 \times 12/17$ (mm) (T)

Plate-sided Pressure (with p=0.25 MPa, amplification factor of 10)

Stiffener-sided Pressure (with p=-0.25 MPa, amplification factor of 10)

Concluding Remarks

Concluding Remarks

The dimension and material properties of a real ship panel was selected as a standard panel and a wider range of plating and stiffener dimensions were considered by varying the panel's properties.

The objective of the benchmark study reported in this paper was to check the accuracy of the ALPS/ULSAP method's use to calculate the ultimate strength of plate and stiffened panel, compared with nonlinear finite element method.

• The ALPS/ULSAP method was found in a good agreement with the nonlinear finite element method computations through a wide range of panel dimensions and different loading conditions.

• The ALPS/ULSAP method is based on design formulations, the computational time required is extremely short compared to the nonlinear finite element method. So, this will be of great advantage in the structures design and safety assessment of ship structures comprising a large number of plate and panels.

Ultimate Strength of Hull Girders

Prof. Jeom Kee Paik, Director The LRET Research Centre of Excellence at Pusan National University, Korea

Overview

- 1. Background
- 2. Rationally-based structural design
- 3. Presumed stress distribution-based method
- 4. Methods applied for the ultimate hull strength analysis
- 5. Analysis results
- 6. Statistical analysis
- 7. Concluding remarks

Background

- To develop the modified Paik-Mansour formula method for the ultimate strength calculations of ship hulls subject to vertical bending moments.
- To validate the accuracy and applicability of modified Paik-Mansour formula method by comparing with more refined other methods.

Rationally-based structural design

(Optimum structural design procedure based on ultimate limit state)

Methods for the ultimate hull strength analysis

• Numerical

- Nonlinear FEM
- Intelligent supersize FEM
- Idealized structural unit method

Analytical

- Design formula
- Experimental

Presumed stress distribution-based method (1/8)

Caldwell's original formula method (1965)

Presumed stress distribution-based method (2/8)

Longitudinal bending stress distribution of tanker hull at ULS obtained by Nonlinear FEA

Presumed stress distribution-based method (3/8)

Longitudinal bending stress distribution of ship hull at ULS obtained by Nonlinear FEA

Presumed stress distribution-based method (4/8)

Original Paik-Mansour formula method (1995)

$$\int \sigma_x dA = 0$$

Presumed stress distribution-based method (5/8)

Modified Paik-Mansour formula method

Presumed stress distribution-based method (6/8)

(Paik and Thayamballi, 1997)

Presumed stress distribution-based method (7/8)

Plate element: $a/b \ge 1$ (Paik at al. 2004)

$$\frac{\sigma_{xu}}{\sigma_{Yp}} = \begin{cases} -0.032\beta^4 + 0.002\beta^2 + 1.0 \text{ for } \beta \le 1.5 \\ 1.274/\beta & \text{for } 1.5 < \beta \le 3.0 \\ 1.248/\beta^2 + 0.283 & \text{for } \beta > 3.0 \end{cases} \qquad \beta = \frac{b}{t}\sqrt{\frac{\sigma_{Yp}}{E}}$$

Plate element: a/b<1 (Paik at al. 2004)

$$\frac{\sigma_{xu}}{\sigma_{Yp}} = \frac{a}{b} \frac{\sigma_{xu}^*}{\sigma_{Yp}} + \frac{0.475}{\alpha^2} \left(1 - \frac{a}{b}\right)$$

$$\frac{\sigma_{xu}^{*}}{\sigma_{yp}} = \begin{cases} -0.032\alpha^{4} + 0.002\alpha^{2} + 1.0 & \text{for } \alpha \le 1.5 \\ 1.274/\alpha & \text{for } 1.5 < \alpha \le 3.0 \\ 1.248/\alpha^{2} + 0.283 & \text{for } \alpha > 3.0 \end{cases} \qquad \alpha = \frac{a}{t}\sqrt{\frac{\sigma_{yp}}{E}}$$

Presumed stress distribution-based method (8/8)

Modeling: Modified Paik-Mansour formula method

Methods applied for the ultimate hull strength analysis (1/5)

- Nonlinear FEM: ANSYS
- Intelligent supersize FEM: ALPS/HULL
- Idealized structural unit method (Smith method): IACS CSR by Dr. C.H. Huang

(China Corporation Register of Shipping)

Modified Paik-Mansour formula method

Methods applied for the ultimate hull strength analysis (2/5)

	NLFEM	ISUM/Smith Method	ISFEM
	(ANSVS)	(IACS CSR)	(ALPS/HULL)
Geometric	Finite element model	Plate-stiffener combination	Plate-stiffener separation
modeling		model	model
Formulation technique	$\sigma = \int [B]^T [D] [B] dvol$: Numerical formulation [D]: Numerical formulation	$\sigma = \Phi \sigma_{\gamma}$:Closed-form solution $\Phi = edge \ function$ $= \begin{cases} -1 \ for \ \varepsilon < -1 \\ \varepsilon \ for \ -1 < \varepsilon < 1 \\ 1 \ for \ \varepsilon > 1 \end{cases}$	$\sigma = \int [B]^T [D] [B] dvol$: Numerical formulation [D]: Closed-form solution
Computational cost	Expensive	Cheap	Cheap
Feature (1)	2 and 3-dimensional	2-dimensional	2 and 3-dimensional
Feature (2)	Can deal with interaction	Can not deal with interaction	Can deal with interaction
	between local and global	between local and global	between local and global
	failures	failures	failures

Methods applied for the ultimate hull strength analysis (3/5)

Extent of the analysis

Methods applied for the ultimate hull strength analysis (4/5)

Initial imperfections

Methods applied for the ultimate hull strength analysis (5/5)

Displacement control with neutral axis changes

Application of vertical bending moments keeping the hull crosssection plane

$$g = \frac{\sum_{i=1}^{n} |\sigma_{xi}| a_i z_i}{\sum_{i=1}^{n} |\sigma_{xi}| a_i}$$

- g = <u>neutral axis position</u> from the baseline
- z_i = <u>distance from the ship's baseline</u> (reference position) to the horizontal neutral axis of the ith structural component
- σ_{xi} = <u>longitudinal stress</u> of the ith structural component following the presumed stress distribution
- a_i = <u>cross-sectional area</u> of the ith structural component
- n = total number of structural components

NLFEM (ANSYS) Modeling

Dow's Test Hull

Total number of elements: 36,432 Elements distribution: Plate: 10 Web: 4 Flange: 2

Container Ship

Total number of elements: 76,992 Elements distribution: Plate: 8 Web: 4 Flange: 1

S/H VLCC

Total number of elements: 262,630 **Elements distribution:** Plate: 10 Web: 6 Flange: 2

Total number of elements: 222,858 Elements distibution: Plate: 10 Web: 6 Flange: 1

Total number of elements: 271,680 Elements distribution: Plate: 10 Web: 8 Flange: 2

D/H VLCC

Total number of elements: 297,888 Elements distribution: Plate: 8 Web: 6 Flange: 2

ISFEM (ALPS/HULL) Modeling

Total number of elements: 196 Plate: 106 elements Beam-column: 90 elements **Container Ship**

Total number of elements: 389 Plate: 231 elements Beam-column: 158 elements

Total number of elements: 605 Plate: 367 elements Beam-column: 238 elements

Total number of elements: 453 Plate: 341 elements Beam-column: 112 elements

Total number of elements: 431 Plate: 243 elements Beam-column: 188 elements

Total number of elements: 834 Plate: 442 elements Beam-column: 392 elements

ISUM (CSR) Modeling by Dr. C. H. Huang (China Corporation Register of Shipping, Taiwan)

Result - Case I: Dow's Test Hull (1/6)

Curvature versus vertical bending moments

Dow's		Desig	gn formula	method		M _u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$
test hull	$\mathbf{M}_{\mathbf{u}}$	Origina	al P-M	Modifi	ed P-M	ANSYS (MNm)	ALPS/HULL	CSR (MNm)
	(MNm)	h _C (mm)	h _y (mm)	h _C (mm)	h _y (mm)		(MINM)	
Hogging	10.338	210.000	0.000	210.000	0.000	11.235	10.698	11.889
Sagging	9.329	760.200	0.000	760.200	0.000	10.618	9.940	10.224

Result - Case II: Container Ship (2/6)

Curvature versus vertical bending moments

Container		Desig	n formula	method		M _u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	
ship	M _u	Original	P-M	Modified	I P-M	ANSYS	ALPS/HULL	CSR	
Sinp	(GNm)	h _C (mm)	h _y (mm)	h _C (mm)	h _C (mm) h _Y (mm)		(GNM)		
Hogging	6.400	698.800	0.000	698.800	0.000	6.969	6.916	8.040	
Sagging	7.077	10330.800	0.000	10330.800	0.000	6.951	6.635	7.843	

Result - Case III: Bulk Carrier (3/6)

Curvature versus vertical bending moments

Bulk		Desig	n formula :	method		M _u	$\mathbf{M}_{\mathbf{u}}$	$\mathbf{M}_{\mathbf{u}}$	
carrier	M _u	Original	P-M	Modified	I P-M	ANSYS	ALPS/HULL	CSR (GNm)	
carrier	(GNm)	h _C (mm)	h _y (mm)	h _C (mm)	h _y (mm)	(GNIII)	(GNM)		
Hogging	16.576	-	-	1654.100	13.700	17.500	16.602	17.941	
Sagging	14.798	17935.000	0.000	17935.000	0.000	15.800	15.380	14.475	

Result - Case IV: Double Hull Suezmax Class Tanker (4/6)

Curvature versus vertical bending moments

Double hull		Desig	n formula	method		M _n	$\mathbf{M}_{\mathbf{u}}$	M	
Suezmax	M _n	Original	P-M	ANSYS	ALPS/HULL	CSŘ (CNw)			
tanker	(GNm)	h _C (mm)	h _Y (mm)	h _C (mm)	h _Y (mm)	(GNM)	(GNm)	(GNIII)	
Hogging	13.965	-	-	12.100	2210.600	14.066	13.308	15.714	
Sagging	12.213	16078.500	0.000	16078.500	0.000	11.151	11.097	12.420	

Result - Case V: Single Hull VLCC Class Tanker (5/6)

Single hull		Desig	n formula :		M _n	$\mathbf{M}_{\mathbf{u}}$	M _u		
VLCC	M _u	Original	P-M	l P-M	ANSYS	ALPS/HULL	CSR (CNm)		
tanker	(GNm)	h _C (mm)	h _y (mm)	h _C (mm)	h _y (mm)	(GNM)	(GNM)	(GINM)	
Hogging	18.701	7035.200	0.000	7035.200	0.000	17.355	17.335	19.889	
Sagging	17.825	15225.500	0.000	15225.500	0.000	16.179	17.263	17.868	

Result - Case VI: Double Hull VLCC Class Tanker (6/6)

Curvature versus vertical bending moments

Double hull		Desig	n formula		M _u	$\mathbf{M}_{\mathbf{u}}$	M _u	
VLCC	M	Original	P-M	Modifie	ed P-M	ANSYS	ALPS/HULL	CSR (CNm)
tanker	(GNm)	h _C (mm)	h _y (mm)	h _C (mm)	h _y (mm)	(GNIII)	(GNM)	(GNIII)
Hogging	25.667			15.900	15.900 3816.000		25.600	28.352
Sagging	22.390	20240.700	0.000	20240.700	0.000	22.495	22.000	24.798

Result: Analysis Video

Statistical analysis - Mean and COV (1/12)

Modified P-M Formula Method versus ANSYS Nonlinear FEA (1/2)

				Hogging			Sagging				
Ship	$\mathbf{M}_{\mathbf{p}}$	Formula		ANSYS		Eerroule/	Forr	nula	ANSYS		Eerroule (
- F	(GNm)	M _{uh} (GNm)	M _{uh} / M _p	M _{uh} (GNm)	M _{uh} / M _p	ANSYS	M _{us} (GNm)	M _{us} / M _p	M _{us} (GNm)	M _{us} / M _p	ANSYS
Dow's test hull	0.013	0.010	0.772	0.011	0.840	0.920	0.009	0.697	0.011	0.793	0.879
Container ship	9.220	6.400	0.694	6.969	0.756	0.918	7.077	0.768	6.951	0.754	1.018
Bulk carrier	20.394	16.576	0.813	17.500	0.858	0.947	14.798	0.726	15.800	0.775	0.937
D/H Suezmax	17.677	13.965	0.790	14.066	0.796	0.993	12.213	0.691	11.151	0.631	1.095
S/H VLCC	22.578	18.701	0.828	17.355	0.769	1.078	17.825	0.789	16.179	0.717	1.102
D/H VLCC	32.667	25.667	0.786	27.335	0.837	0.939	22.390	0.685	22.495	0.689	0.995
Mean						0.966					1.004
S-D						0.061					0.088
COV						0.063					0.087

Statistical analysis - Mean and COV (2/12)

Modified P-M Formula Method versus ANSYS Nonlinear FEA (2/2)

Statistical analysis - Mean and COV (3/12)

Modified P-M Formula Method versus ALPS/HULL ISFEM (1/2)

				Hogging			Sagging					
Ship	M _p	Forr	Formula		ALPS		For	nula	ALPS		Earranda (
~ F	(GNm)	M _{uh} (GNm)	M _{uh} / M _p	M _{uh} (GNm)	M _{uh} / M _p	ALPS	M _{us} (GNm)	M _{us} / M _p	M _{us} (GNm)	M _{us} / M _p	ALPS	
Dow's test hull	0.013	0.010	0.772	0.011	0.799	0.966	0.009	0.697	0.010	0.743	0.939	
Container ship	9.220	6.400	0.694	6.916	0.750	0.925	7.077	0.768	6.635	0.720	1.067	
Bulk carrier	20.394	16.576	0.813	16.602	0.814	0.998	14.798	0.726	15.380	0.754	0.962	
D/H Suezmax	17.677	13.965	0.790	13.308	0.753	1.049	12.213	0.691	11.097	0.628	1.101	
S/H VLCC	22.578	18.701	0.828	17.335	0.768	1.079	17.825	0.789	17.263	0.765	1.033	
D/H VLCC	32.667	25.667	0.786	25.600	0.784	1.003	22.390	0.685	22.000	0.673	1.018	
Mean						1.003					1.020	
S-D						0.055					0.061	
COV						0.055					0.060	

Statistical analysis - Mean and COV (4/12)

Modified P-M Formula Method versus ALPS/HULL ISFEM (2/2)

Statistical analysis - Mean and COV (5/12)

Modified P-M Formula Method versus CSR ISUM (1/2)

				Hogging			Sagging					
Ship	$\mathbf{M}_{\mathbf{p}}$	Formula		CSR		Eermula/	Forr	nula	CSR		Earranda /	
~ P	(GNm)	M _{uh} (GNm)	M _{uh} / M _p	M _{uh} (GNm)	M _{uh} / M _p	CSR	M _{us} (GNm)	M _{us} / M _p	M _{us} (GNm)	M _{us} / M _p	CSR	
Dow's test hull	0.013	0.010	0.772	0.012	0.888	0.870	0.009	0.697	0.010	0.764	0.912	
Container ship	9.220	6.400	0.694	8.040	0.872	0.796	7.077	0.768	7.843	0.851	0.902	
Bulk carrier	20.394	16.576	0.813	17.941	0.880	0.924	14.798	0.726	14.475	0.710	1.022	
D/H Suezmax	17.677	13.965	0.790	15.714	0.889	0.889	12.213	0.691	12.420	0.703	0.983	
S/H VLCC	22.578	18.701	0.828	19.889	0.881	0.940	17.825	0.789	17.868	0.791	0.998	
D/H VLCC	32.667	25.667	0.786	28.352	0.868	0.905	22.390	0.685	24.798	0.759	0.903	
Mean						0.887					0.953	
S-D						0.051					0.054	
COV						0.058					0.056	

Statistical analysis - Mean and COV (6/12)

Modified P-M Formula Method versus CSR ISUM (2/2)

Statistical analysis - Mean and COV (7/12)

ANSYS Nonlinear FEA versus ALPS/HULL ISFEM (1/2)

				Hogging			Sagging					
Ship	M _p	ANSYS		AL	ALPS		ANS	SYS	AI	.PS		
~ P	(GNm)	M _{uh} (GNm)	M _{uh} / M _p	M _{uh} (GNm)	M _{uh} / M _p	ALPS / ANSYS	M _{us} (GNm)	M _{us} / M _p	M _{us} (GNm)	M _{us} / M _p	ALPS / ANSYS	
Dow's test hull	0.013	0.011	0.840	0.011	0.799	0.952	0.011	0.793	0.010	0.743	0.936	
Container ship	9.220	6.969	0.756	6.916	0.750	0.992	6.951	0.754	6.635	0.720	0.955	
Bulk carrier	20.394	17.500	0.858	16.602	0.814	0.949	15.800	0.775	15.380	0.754	0.973	
D/H Suezmax	17.677	14.066	0.796	13.308	0.753	0.946	11.151	0.631	11.097	0.628	0.995	
S/H VLCC	22.578	17.355	0.769	17.335	0.768	0.999	16.179	0.717	17.263	0.765	1.067	
D/H VLCC	32.667	27.335	0.837	25.600	0.784	0.937	22.495	0.689	22.000	0.673	0.978	
Mean						0.962					0.984	
S-D						0.026					0.045	
COV						0.027					0.046	

Statistical analysis - Mean and COV (8/12)

ANSYS Nonlinear FEA versus ALPS/HULL ISFEM (2/2)

Statistical analysis - Mean and COV (9/12)

ANSYS Nonlinear FEA versus CSR ISUM (1/2)

				Hogging			Sagging				
Ship	$\mathbf{M}_{\mathbf{p}}$	ANSYS		CSR		CSD/	ANS	SYS	CSR		CSD/
	(GNm)	M _{uh} (GNm)	M _{uh} / M _p	M _{uh} (GNm)	M _{uh} / M _p	ANSYS	M _{us} (GNm)	M _{us} / M _p	M _{us} (GNm)	M _{us} / M _p	ANSYS
Dow's test hull	0.013	0.011	0.840	0.012	0.888	1.058	0.011	0.793	0.010	0.764	0.963
Container ship	9.220	6.969	0.756	8.040	0.872	1.154	6.951	0.754	7.843	0.851	1.128
Bulk carrier	20.394	17.500	0.858	17.941	0.880	1.025	15.800	0.775	14.475	0.710	0.916
D/H Suezmax	17.677	14.066	0.796	15.714	0.889	1.117	11.151	0.631	12.420	0.703	1.114
S/H VLCC	22.578	17.355	0.769	19.889	0.881	1.146	16.179	0.717	17.868	0.791	1.104
D/H VLCC	32.667	27.335	0.837	28.352	0.868	1.037	22.495	0.689	24.798	0.759	1.102
Mean						1.090					1.055
S-D						0.056					0.091
COV						0.052					0.086

Statistical analysis - Mean and COV (10/12)

ANSYS Nonlinear FEA versus CSR ISUM (2/2)

Statistical analysis - Mean and COV (11/12)

ALPS/HULL ISFEM versus CSR ISUM (1/2)

				Hogging			Sagging					
Ship	M _p	ALPS		C	CSR		ALPS		CSR			
Siip	(GNm)	M _{uh} (GNm)	M _{uh} / M _p	M _{uh} (GNm)	M _{uh} / M _p	CSR/ ALPS	M _{us} (GNm)	M _{us} / M _p	M _{us} (GNm)	M _{us} / M _p	CSR/ ALPS	
Dow's test hull	0.013	0.011	0.799	0.012	0.888	1.111	0.010	0.743	0.010	0.764	1.029	
Container ship	9.220	6.916	0.750	8.040	0.872	1.163	6.635	0.720	7.843	0.851	1.182	
Bulk carrier	20.394	16.602	0.814	17.941	0.880	1.081	15.380	0.754	14.475	0.710	0.941	
D/H Suezmax	17.677	13.308	0.753	15.714	0.889	1.181	11.097	0.628	12.420	0.703	1.119	
S/H VLCC	22.578	17.335	0.768	19.889	0.881	1.147	17.263	0.765	17.868	0.791	1.035	
D/H VLCC	32.667	25.600	0.784	28.352	0.868	1.108	22.000	0.673	24.798	0.759	1.127	
Mean						1.132					1.072	
S-D						0.038					0.087	
COV						0.034					0.081	

Statistical analysis - Mean and COV (12/12)

ALPS/HULL ISFEM versus CSR ISUM (2/2)

Concluding Remarks(1/2)

- Four methods, namely NLFEM (ANSYS), ISFEM(ALPS/HULL), ISUM(CSR method), and Modified P-M formula method have been considered.
- Modified P-M formula method calculations are in good agreement with ANSYS nonlinear FEA and ALPS/HULL progressive collapse simulations.

Concluding Remarks(2/2)

 Statistical analysis of the hull girder ultimate strength based on comparisons among the various computation is carried out in terms of their mean values and coefficient of variation.

Ship	Formula/ ANSYS		Formula/ ALPS		Formula/ CSR		ALPS/ ANSYS		CSR/ ANSYS		CSR/ ALPS	
	Hog	Sag	Hog	Sag	Hog	Sag	Hog	Sag	Hog	Sag	Hog	Sag
Dow's test hull	0.920	0.879	0.966	0.939	0.870	0.912	0.952	0.936	1.058	0.963	1.111	1.029
Container ship	0.918	1.018	0.925	1.067	0.796	0.902	0.992	0.955	1.154	1.128	1.163	1.182
Bulk carrier	0.947	0.937	0.998	0.962	0.924	1.022	0.949	0.973	1.025	0.916	1.081	0.941
D/H Suezmax	0.993	1.095	1.049	1.101	0.889	0.983	0.946	0.995	1.117	1.114	1.181	1.119
S/H VLCC	1.078	1.102	1.079	1.033	0.940	0.998	0.999	1.067	1.146	1.104	1.147	1.035
D/H VLCC	0.939	0.995	1.003	1.018	0.905	0.903	0.937	0.978	1.037	1.102	1.108	1.127
Mean	0.966	1.004	1.003	1.020	0.887	0.953	0.962	0.984	1.090	1.055	1.132	1.072
S-D	0.061	0.088	0.055	0.061	0.051	0.054	0.026	0.045	0.056	0.091	0.038	0.087
COV	0.063	0.087	0.055	0.060	0.058	0.056	0.027	0.046	0.052	0.086	0.034	0.081